240 research outputs found

    Representing three-dimensional cross fields using 4th order tensors

    Full text link
    This paper presents a new way of describing cross fields based on fourth order tensors. We prove that the new formulation is forming a linear space in R9\mathbb{R}^9. The algebraic structure of the tensors and their projections on \mbox{SO}(3) are presented. The relationship of the new formulation with spherical harmonics is exposed. This paper is quite theoretical. Due to pages limitation, few practical aspects related to the computations of cross fields are exposed. Nevetheless, a global smoothing algorithm is briefly presented and computation of cross fields are finally depicted

    Optimizing the geometrical accuracy of curvilinear meshes

    Full text link
    This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.Comment: Submitted to JC

    One machine, one minute, three billion tetrahedra

    Full text link
    This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multi-threaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors, an Intel core-i7, an Intel Xeon Phi and an AMD EPYC, on which we have been able to compute 3 billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator which takes as input the triangulated surface boundary of the volume to mesh

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    Efficient Computation of the Extrema of Algebraic Quality Measures for Curvilinear Finite Elements

    Full text link
    The development of high-order computational methods for solving partial differential equations on unstructured grids has been underway for many years. Such methods critically depend on the availability of high-quality curvilinear meshes, as one bad element can degrade the solution in the whole domain. The usual way of generating curved meshes is to first generate a (high-quality) straight-sided mesh. Then, mesh entities that are classified on the boundaries of the domain are curved. This operation introduces a "shape-distortion" that should be controlled. Quality measures allow to quantify to which point an element is well-shaped. They also provide tools to improve the quality of meshes through optimization. In this work we propose an efficient method to compute several quality measures for curved elements, based on the Jacobian of the mapping between the straight-sided elements and the curved ones. Contrary to the approach presented in "A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Distortion and quality measures for validating and generating high-order tetrahedral meshes. Engineering with Computers, pages 1–15, 2014.", which relies on an L2-norm over the elements, we compute the actual minimum and maximum of the local quality measure for each element. The method is an extension of previous works on the validity of those elements (A. Johnen et al., 2013). The key feature is that we can adaptively expand functions based on the Jacobian matrix and its determinant in terms of Bézier functions. Bézier functions have both properties of boundedness and positivity, which allow sharp computation of minimum or maximum of the interpolated functions
    • …
    corecore